8. MASS AND INERTIA

Performance, stability, control, and strength analyses of airborne vehicles depend not only on the mass of the vehicle
but on the distribution of the mass within the vehicle. This concept of mass distribution is reflected in the property of
the vehicle called moment of inertia. This Section discusses moment of inertia determination for two types of airborne
vehicles — manned aircraft and missiles.

81 AIRCRAFT MASS AND INERTIA

The purpose of this Section is to furnish the engineer with a method for rapidly but accurately estimating the moment
of inerlia of manned aircraft during the preliminary-design period. Such inertias are needed in order that dynamic lvad
and stability characteristics of 1he aircraft may be evaluated.

The following pages present basic moment.of-inertia theory, a discussion of inertia mothods in general with the assump-
tions and conclusions used in evolving the Datcom method, and a discussion of the Datcom method in detail, with a
summary showing the step-by-step procedure to follow when using this method.

This method applies to all existing combat and transport aircraft including those of unconventional® design. If radically
diflerent airplane configurations evolve, the present methods will have to be altered. The tools needed are a weight-and.
balance statement, a three-view drawing, and some knowledge of the design characteristics of the airplane. A total time
.of approximately three hours for one man is needed to estimate inertia by this method, and the accuracy obtained is
within the tolerance requited for any preliminary-design project. :

Basic Moment-of-Inertia Theory

Moment of inertia is the measure of resistance to angular acceleration, as mass is the measure of resistance to linear
acceleration. Moment of inertia may be mathematically derived as follows:
If torque is expressed as the product of force and radius
T = Fr
and the following substitutions are made:
F=ma and a=ar

‘then

T = mar
or

T = mrie 8.1-a
where

is the linear acceleration
a is the angular acceleration
m is the mass

The term mr? is defined as the moment of inertia (I) and equation 8.1-a may be written
T=1la« 8.1b
I a body of mass m is caused to rotate about a remote axis y {see sketch (a)) the following relationship exists:
y = mr?* = m (x* +7) B.lc

However, since mass m  not only offers resistance to rotation about the y axis but also offers resistance to rotation
about its own centroidal axis, the total inertia of m about y is

I, =mr? + I, 8.1d

where 1, is the inertia of m about its own centroidal axis.

*The term unconventional as used herein refers chiefly to extreme locations of the wing, fuselage, tail and power plant
sections with respect to each other, and to the size aad mass of these sections. However, when the shape and mas. dis.
tribution of any of the sections change considersbly over present state of the art design, the method for conputing
inertia as described herein should be altered &cordingly.
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SKETCH (a})

If mass m is divided into several parts, m;, m;, ... m,, then the total inertia of the sum of these parts about y is
L =mn?+ Ly, + mr? + Loy, + . omar? + 1y,

or

n
L = 2 {me® 4 Loy) 8.1<

Finally, if the total inertia about a remote axis is computed from equation 8.1-e, the inertia of the tolal mass about its
own centroidal axis can be computed from equation 8.1-d, or

I, = I, — mi 8.1f

where ¥ is the distance from the y axis to the centroid of the total mass,

8.1¢g

Inertia Methods in General

As equation 8.1-d indicates, the inertiz of a body about a remote axis depends on three basic factors: (1) mass, (2) the
distance of the mass {rom the remete axis, and (3) the inertia of the mass about its own centroidal axis. If any one
of these factors is ignored, the inertia derived will not be accurate.

A common method is to divide the airplane into many sections, so that the I, values may be calculated easily and
accurately. The total airplane inertia about the remote axis may then be derived by equation 8.1-¢, and the total inertia
about the aircraft’s centroidal axis by equation 8.1-f. Unfortunately, however, this method requires a detail breakdown
of the masses and centroids of the components of the aircraft as well as a large time expenditure, Therefore the method
does not lend itself to successful application at the preliminary design level.

Another method for computing inertia is one in which the total mass and dimensional data of the aircraft are used as
paramelers in an empirical inertia equation. However, the equations have 1o be based on aircraft with mass distribution
stmilar to that of the proposed aircraft, since the mass and locations of the wing, fuselage, tail, and engines can vary
greatly between aircraft. This means that a large amount of statistical data has to be available, and this type of method
is almost useless for aircraft of unconventional design, where there is a lack of statistical data.
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Obviously neither of these two methods fulfills the requirements for one rapid but accurate method independent of air-
plane type or conventional nature. But consideration of a few facts about inertia methods in general shows which method
is preferable in a particular sitvation. These facts are:

(1) When statistical data are not available —

{a) The time required to compute inertia and the accuracy of the answer are directly proportional to the
number of sections into which the airplane is divided.

(b) The number of sections into which the airplane is divided is dependent on the amount of detail informa-
tion available.

(2) When statistical data are available —
[ ]

(a) Time is inversely proportional to parametric correlation, which is the mutual relationship of the inertia
of the proposed aircraft to statistical data by means of parameters such as size, shape, and mass.

(b) Accuraty is dependent upon the extent to which parametric correlation is applied. This means that. if
these correlations are carried beyond the bounds of mass distribution similarity, the accuracy is aflected
adversely; if carried only as far as these bounds, the accuracy is affected only slightly.

Therefore the method evolved is one that divides the airplane into the least number of sections necessary.to maintain
sufficient mass distribution similarity to permit valid parametric correlation. Thus the accuracy obtained is within the
tolerance required for preliminary-design studies. After careful consideration, these five major sections were chosen:

(1) Wing

{2) Fuselage

{3) Horizontal Stabilizer

{4) Vertical Stabilizer

(5) Power Plant (Engine and Nacelle}

The inertins for fuel, cargo, and other variable items may also be added, as shown in the sample problem.

DATCOM METHOD

The method consists of determining the mass and centroids for each of the major sections and then, by equations in-
volving the parameters of size, shape, mass, and centroids, calculating the I, values for each of these sections. Once
this is completed, the inertias about the remote axis may be derived by equation 8.1, and hence the inertias about the
sirplane centroids by equation 8.1.f.

The I, formulas are based on aircraft in a gear-up configuration with expendable and variable items, such as fuel,
cargo, and passengers, deleted. Since it is impossible to predict the aircraft configurations for which inertia will be
needed, the inertia for the expendable and variable items comprising these configurations must be added to the basic
inertia derived from the method.

z AXIS
s AXIS
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SKETCH (b)
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Step 1.

Step 2.

Sh:E 3.

8.14

Selection of remote axes - — Three remote axes are chosen so that inertia in pitch, roll, and yaw may be cal-
culated. The origin of these axes should be located so that distances to the centroids of the major sections are
positive and should be located on the plane of symmetry of the airplane. This type of location simplifies calcu-
lations and minimizes errurs. An example of a remote-axis selection is shown in sketch {b}. The “x" axis is
the axis along which longitudinal distances are measured; the y axis is the axis along which the lateral

distances are measured; the z axis is the axis along which vertical distances are measured.

Mass and centroid determinations for the major sections — With the aid of a weight-and-balance statement,
the three-view drawing, and a knowledge of the locations of the group items, the mass and corresponding
centroids for each of the five sections are determined. These values are then recorded on a form similar to the
one shown in the sample problem.

Fur single-engine aircraft with the engine mounted on the aircraft plane of symmetry and with the nacelle
structure in part integral with the fuselage, only the engine is considered as a separate section, and the nacelle
and other engine items are considered with the fuselage section. Only x and =z distances are recorded
for all sections mounted on the aircraft plane of symmetry, However, for noncenterline-mounted vertical stabi-
lizers and power-plant sections y distances are recorded in addition to x and z values, since the I,
values are calculated about the centroids of each section. For example, the power-plant sections for a four-engine
aircraft are analyzed as follows:

The masses of both inboard power-plant sections are added together and recorded. The lateral distance
from the aircraft plane of symmetry to the centerline of one of the inhoard power plants is recorded along
with the distances from the other two axes. The outboard power plants are analyzed similarly, except that
the lateral distance recorded is mezsured from the aircraft plane of symmetry to the centerline of one of
the outbeard power plant sections.

Care must be taken to use consistent units for mass and distance throughout the entire calculation. Since most
group components are listed by pounds, this unit of weight may be used for all calculations. The resulting
inertias may then be converted to units involving mass by dividing by the acceleration due to the force of
gravily at the desired altitude. An example of such a conversion is included in the sample problem,

Calculations of 1, for the major sections -— The 1, values for the major sections are determined by first
considering an “ideal” formula that closely correlates with the shape of the section. These formulas are labeled
“ideal,” since they are based on sound mathematical principles, a prerequisite for any school, and since they
assume a homogencous mass distribution throughout the section. The result from the “ideal” formula is then
multiplied by a K factor that accounts for deviations in the homogeneous nature of the mass nf the section.
These factors are based on statistical data. It is found that for some sections a constant factor may be used.
For other sections, where the mass distribution may vary considerably, it is found that the K {actor varies
primarily with the centroid location of the section. Graphs showing the variable K factors, along with
substantiating correlation plots, are included as figures. The 1, calculations for each section follow:

(a) Wing Pitching I,

The wing pitching 1, formulas are listed in the summary. The formulas are based on a consider-
ation of three basic wing shapes (see figure 8.1.22). A constant K factor (K, == 0.703) is used
for all wing designa.

{b) Wing Rolling I,

—

Because of the large span of the wing with respect to other sections of the aircraft, the wing rolling
I, calculations has the grealest effect on the rolling inertia of the aircraft. The variable K factor
(K,) shown in figure 8.1-23 is hased primarily on the lateral centroid of half the wing. As this
centroid approaches the aircraft plane of symmetry, more weight must be concentrated in the inboard
section ol the wing, thereby lowering its [,  value.



(¢) Wing Yawing I,

As is shown by statistical data and by an analysis of the inertias of flat plates, the wing yawing I,
is equal to the sum of the wing pitching and rolling 1.’s.

{d) Fuselage Pitching I,

The fuselage pitching 1, formula is based on that of a combination cylindrical shell and conical shell.
The formula provides that as the ratio of the fuselage wetted area to the theoretical wetted area of the
fuselage as a two-way cone increases, the inertia approaches that of a cylindrical shell. The fuselage
I, is probably the most difficult to correlate parametrically, since parameters are not available to
accurately predict the location of large mass items such as landing gear, electronic equipment, ete.
However, statistical data show that the longitudinal centroid location has a definite bearing on the
inertia, and therefore the variable K factor (K,) uses this centroid location as its basic parameter
{see figure 8.1-24). It should also be noted that the fuoeluge pitching I, has the greatest effect on
the pitching inertia of the airplane.

{¢) Fuselage Rolling I,

The formuyla is based on that of a cylindrical shell of an average diameter determined by consideration
of the fuselage wetted area. The fuselage diameter and the ratio of the fuselage structural mass to the
total fuselage section mass are the parameters by which K is computed. As the fuselage diameter
decreases, the 1, approaches that of a solid cylinder, since the solidity of the equipment items is
more effective, Therefore the fuselage diameter is directly proportional to the I, value since the
rolling I, of the solid circular cylinder is less than that of a cylindrical shell.

The ratio of the fuselage structural mass 1o the total fuselage-section mass is also directly proportional
to the I, result, since as the value of the ratio decreases, the effect of the solidity of equipment
items increases, which decreases the final I, result. The graph for determining the variable K
factor (K,) is shown ss figure 8.1.25.

(f) Fuselage Yawing I,

As is shown by statistical data and by an analysis of the inertias of cylindrical bodies, the fuselage
yawing 1, is equal to the fuselage pitching 1.

(g) Tail Section I,

The tail section ], determinations are similar to those discussed for the wing. Note that the con-
stant K factor used in evaluating tail section L's differs from the wing K, value. For hori-
sontal or vertical stabilizers K, = 0.771.

(h) Power-Plant Pitching and Rolling I,

The power-plant pitching and rolling formulas are based on that of a solid circular cylinder. The
pitching 1, formula accounts for differences in length between the nacelle structure and the engine.
Both formulas includc 2 constant factor that may be used for all designs. These formulas are given
in the Datcom Summary.

(i) Power-Plant Yawing 1,

As is shown by atatistical data and an analysis of the inertias of cylindrical bodies, the power plant
yawing 1, is equel 10 the power plant pitching 1.

Step 4. Total airplane inertia — When the data discussed above and similar data for the expendable or variable load
items have been itemized, the total airplane inertias in pitch, roll, and yaw can be determined from equations
8.1-¢ and 8.1-f. For further iltustration, see the sample problem.
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Ten aircraft were analyzed in detail, in order to substantiate the method and the choice of major sections. These aircraft
were chosen for their availability of data, for the degree in which they could be analyzed in detail, and for the large
cress seetion of ronligerations, wuioo cewile (1) Cuie wall v ceigat abfiy of rote TR0 to 125007 Louuk, (L)
swept and nonswepl wing designs, (3} combat, cargo, and passenger types for Air Force, Navy, and commercial uses,
(4) reciprocal and jet, both multiple- and single-engine designs, {5) wing and fuselage engine locations, (6) wing and
fuselage main-landing-gear locations, (7) fuselage and nonfuselage fuel locations, and (8) all types of tail configurations,
including those having wing-mounted elevons instead of horizontal stabilizers.

DATCOM METHOD - SUMMARY

1. Notation"

I, pitching moment of inertia about a remots axis

L rolling moment of inoztie shout & =note ~as

I yawing moment of inertia about a remote axis

L., pitching moment of inertia about the centroidal axis of the body
1. rolling momer:t o inertis about the centro.cal axit of the bocy
I, yawing moment of inertia about the centroidal axis of the body
W. weight of wing section including wing carry-through structure

¥ lateral centroidal distance of half-wing from aircraft plane of symmetry

C,.C,. C, wing parameters measured parallet to plane of symmetry (see figure 8.1-22 and page 8.1-7)
cr root chord of wing (at §)

¢ tip chord of wing

ALa sweepback angle of wing leading edge

W, weight of fuselage section

Wi weight of fuselage structure

X longitudinal centroidel distance of fuselage from nose

1y length of fuselage

max. diamecter + max. width
2

d average maximum diameter of fuselage =

5, fuselage wetted area
Wu weight of horizontal stabilizer section

Yu laterat centroidal distance of half horizontal stabilizer from aircraft plane of symmetry
root chord of horizontal stabiliser (at ¢)

1
c.: tip chord of horizontal stabilizer

bu span of horizonts] stabiliser

Ays,  sweepback angle of horizontalstabiliser leading edge
Wy weigI’It of vertical stabiliser

z, vertical centroidal distance of vertical stabilizer from theoretical root chord (at fuselage)
Cry root chord of vertical stabiliser (at fuselage)
* Since the vatues used for W in this section are those of weight instead of mass, the solution of the equations is more

general and applicable to any altitude. Consequently, the inertias throughout the problem are in Ib-in.2, but are con-
verted at the end of the probiem to stug-ft? by using the value of gravity at the particular altitude.
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€ tip chord of vertical stabilizer

by, span of vertical stabilizer (tip to fuselage)
An sweepback angle of vertical stabilizer leading edge
W weight of power plant section

W, weight of engine and propeller (if applicable)

1, length of engine including propeller (if applicable)
d. average maximum diameter of engine

1, length of nacelle structure

P ratio of weight to chord for wing shapes

. Select three remote axes and an origin location for these axis.

convenient form.

. Determine the !, figures for the major sections as follows:

a. Wing pitching I, (see figure 8.1-22 for development of equations)

if: Wy=5(-C+G+C)

W,

Wi =L (—C G + GG+ C)

ol
1= G+ G+ GG+ GG+ CY)

= [i-lel]

W
where:
K, =0.703
C. is the smallest of the following values:
oy A DAy

C, is the intermediate value
C, in the largest value

b. Wing Rolling I,

I —_ W'bw: K; Cy + 3Cg
o 29 ¢ + c.

where K, is obtained from figure 8.1-23.

¢. Wing Yawing I,

I, = [o,y 1

. Determine mass and centroids for all sections and applicable expendable and varisble load items and record on a

. From the information determined by item 3, calculate and record mass times centroid and mass times centroid squared.

8.l
8.1,

8.1k

8.1-m

8.1.n

8.1.7



. Fuselage Pitching 1,

3 W,S.K,(ad L

=7 \2, ¥ 4

" where K, is obtained from figure 8.1:24.

. Fuselage Rolling 1,

l__WtKa s- t
g xla .

where K, is obtained from figure 8.1-25.

. Fuselage Yawing I,

lol = Io!

. Horizontal Stabilizer Pitching 1,

Use same equations as wing pitching 1,

K, =0.771

. Horizontal Stabilizer Rolling I

Lo

— Wu bt K. c'H + 30'“
24 T'H + c"H

where K, is obtained from figure 8.1.26.

. Horizontal Stabilizer Yawing I,

L. =L, + L.

. Vertical Stabilizer Rolling I,

= W. b, K. [1 . 2%, %, ]
18 Crg + o)

where K, is obtained from figure 8.1-27.

. Vertical Stabilizer Yawing I,

Use same equations as wing pitching 1, (use twice the vertical stabilizer span as the value
of b in the equations for wing pitching 1))

K, =01

Vertical Stabilizer Pitching I
ly = la + 1

m. Power Plant Pitching 1,

1., = 0.061 [%- W,dt + Wbt + (W, — W) z,=]

n. Power Plant Rolling 1.

818

.. = 0083 W,d.*

8.1-0

8.1p

8.1q

81

8.1

8.1t

8.1-u

81-v

81w



o. Power Plant Yawing L

Li= 1o

8lx

6. Determine the [, value for the expendable and variable load items by considering the conventional inertia formulas

which closely match the shape of these load items. (See sample problem.)

7. Determine the total airplane inertias in pitch, roll, and yaw by using equations 8.1-¢ and B.1{. {See sample problem.)

Sample Problem

Given:

I-an.-.-l

A

PROFILE VIEW FRONT VIEW

SYMMETRY

Aux et €|
<1

PLAN VIEW

219



Wing Fuselage

Al,g = 12.1° In = 1200 in. -
by =10 d = 150in. SECTION | WEIGHT | «x s y
¢ = 300in. T; = 500in. (Ibe) | (in) | (in} | (in)
¢ = 100in. S. = 400,000 sq in. Wing 15,000 650 150
Yw = 150 in. W, = 80001b Fuselage 20,000 600 200
H. Stab. 1000 1150 200
Hor. Stab. Power Plant '

A V. Stab. 300 1200 300

g = 12° t, = 200in.

H P. Plant 10,000 520 150 200
b" = 400 in. 1. = 100 in.
Fuel 20,000 650 150

¢, = 1004n. d, = 50in.

H Cargo 10,000 500 200
¢, = 50in. W, = 70001b
7}1 = 80in.

Ver. Stab.

ALEV= 37°
bv ] = 200 in.

ry = 250in.
c‘v = 100 in.

‘iv = 75ian.

Compute:

1. Calculate and tabulate the products of weight and centroid location and the products of weight and centroid location squared.

2. Determine the 1, values for the major sections.
a. Wing pitching 1.
_bwanAle  11000) an121°

C‘ 2 2 = 107 m.
tan A .
C,o=c¢ + b_w._.T——L-Ez 100 + 107 = 207 in. {equ.llon 8.[-‘)
Cr = = 300 in.
K. = 0.703 (constant for any wing}
ww
e e o o) (equation 8.1-h)
15,000

= 75 Ib/in.

= B{=107 + 207 + 300)
Wyx=L{—C! + G+ CCu + C*]  (equation 8.1.4)

= 125 [ - (107)* + (207}* + (300) (207} + (300}3]) = 2,293,750 lb-in.
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L[-C % G+ CG + €GP + 2] (equation 814)

6251 (107)°+ (207)* + (300)* (207) + (300) (207)* + (300)°] = 413,308,750 1b-in.?

w 2
I, = Ko [l - (—‘;ﬂ—] {equation 8.1-k)

w
(2,293,750)*
15,000

(0.703) [413,308,750 - ] = 43,976,971 Ib-in.*

b. Wing Rflling I,

Y

w150 _
bt 208 072
-gc,+c.

K, = 067 (figure 8.1.23)

_ W bwzxv ¢; + 3e, .
T ( o T e ) (equation 8.1.m)

_ {15,000) (1000} *(0.67) /300 + 300
- 24 300 + 100

= 628,125,000 Ib-in.?

¢. Wing Yawing I,
I = I, + I, {equation8.1-n)

= 43,976,971 + 628,125,000 = 672,101,971 Ib-in.2
d. Fuselage Pitching 1,

IQTB“’—‘f
%

2
.= 083 (figure 8.1.24)

_ W:S,K, f3d . 1y .
I, = —3768 \2i, + 3 ) (equation 8.1-0)

_l600—500] _,
% :

17

__ (20,0001 (400,000) (0.83) { 450 , 1200 _

e. Fuselage Rolling 1,

(d) v+ (W) _ (150) 11 (8,000)
W - 20,000

K, = 097 (figure8.125)

=49

te = T2 (51) (oquation 81p)

_ (20,000) (0.97) {400,000\*_ .
= 2 moo,) = 54,600,860 Ib-in.?

f. Fuselage Yawing 1,
L. = L, = 1,422,807,855 Ib-in.?

a1-11



g. Horizontal Stabiliser Pitching I
“LE, (400) tan12°

C. = : = 43 in.
by nh g
Gy =6+ —5— = 50 + 43 = 93in. (equation 8.1-1)
C. =¢,= 100in, S
K, = 0.771 (constant for any tail surface)
wl‘l
P STC T G A Gy (cautien8L)
1000 = 13.3 Ibfin.

= 5(—43 + 93 + 100)
Wx = -5 [—C2+ Gt + C.C, + C*] (equation B.1-4)
Wix=z 2.2 [—(43)* + (93)% + (100) (93) + (200)*] = 57,420 Ib-in.
1= -P—[-c » Cy + C2Cy + C.C + C.*1 (equation 8.1§)
=1.1[ —(43)* + (93)* + (100}* (93) + (100) (93)* + (100)*] = 3,871,725 Ib-in*
2

WHx
I, =K, [I - ] (equation 8.1k)
Wi

(57,420)*

= (0.771) [3,371,725 - B ] = 443,070 Ibin.?

h. Horizontal Stabilizer Rolling 1,
¥x - 80 =
By (g T ZopY - 200 (100 + 100 = 050
$ \S F¢ 6 \100 + 50
H H
K, = 0740 (figure 8.1-26)

3c,
Wb K, { ut
Iy = —- 2: s (c I ) (equation 8.1-1)

(10001 (400)? (074) 100 + 150 _ ‘
= 5 6T 50) = 8,222,222!1»—1::.'

i. Horizontal Stabilizer Yawing I,
L, = L, + l.. (equation 8.1-s)
= 443,070 + 8,222,222 = 8,665,292 1b-in.?

j. Vertical Stabilizer Rolling 1.

k3
bv C + 2c 2m 250+200
T A 350 + 100
3 c, +c
v v
K, = 0930 (figure8.1-27)
b ?
_ W, v K, 25 'v Y__
l-: 18 [I + (c‘ +c ) ] (eqllltlou&l»t)
v

8.1-12



_ (300) (200)* (0.93) 2(250) (100) 7 _
= 18 2+ TS0 To0)T| = 7290 b

k. Vertical Stabilizer Yawing 1,
C. =b"|nnAL£v= (200) tan 37° = 150 in.
C. =°.v + bv tanA,_Ev= 100 + 150 = 250 in. (equation 8.1-1)
1

C. =ctv = 250 in.
K. = 0.771 (constant for any tail surface)
Wv .
RN Y Y ey ey o (equation 8.1-h)
300

= 3{=150 ¥ 250 ¥ 50y _ 17 1b/in.

Wyx=£[—CI + C + CC, + C7]  (equation 8.1.i)
=0.28[ ~ (150)*+ (250)*+ (250) (250) + (250)*] = 46,200 Ib-in
I=5C+ G + €A + CCP + CF]  (equation 8.14)
= 0.14[{150)* + (250) "+ (250) * (250) + (250) (250) * + (250)?] = 8,277,500 Ib-in.2

z—
L. =K, [I - (WVX)J (equation 8.1-k)

v

= (0.771) [ 8,277,500 -1“3_'0020_0121 = 896,442 Ibin.? *

L. Vertical Stabilizer Pitching I,
Inr = Io: + Io. (eql-lllioll&l-u)
= 872,960 + 896,442 = 1,769,402 Ib-in.?

m. Power Plant Pitching 1,

I, = 0.061 [% W,d + Wt + (W, — W.) 1.-] (equation 8.1-v)

= 0.061 [«} (10,000) (50)* + (7000) (100) * + (10,000 — 7000) (200) -]
= 12,733,750 lb-in.?

n. Power Plant Rolling 1,
I.. = 0.083 W,d.’ {equation 8.1.w)
= (0.083) (10,000) (50)* = 2,075,000 lb-in.?
o. Power Plant Yawing I,
L. =1, = 12,733,750 lb-in.* (equation 8.1-x)
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3. Determine the I,

values for the expendable and variable loads items

efd

a Fuel I,
Eatimate fuel volome as a rectangular flat plate
Span = 600in. Chord = 150in.  Thickness = 8 in.
Using the conventional inertia formula for a rectsngular paratlelopiped
L, = o (o + 1) = 2200 (1501 + (8)*] = 37,606,667 Ipin?
w
tyy= e + 1) = 25000 [(600)* + (8)") = 600,106,667 1bin?
1,,= -“—;w +bY = 2°°°° [(150)* + (600)?] = 637,500,000 Ib-in.*
where W is the fuel weight
b. Cargo I,
*Cargo Distribution
150
Cargo 100
Width
(ind 50 4
0 L 4 T 4
0 100 200 300 400
Cargo Length (ind
150
Cargo 100+
Height
{ind 50 4
0 | J L] LJ
0 100 200 300 400
Cargo Length {in)

*Indicated as & sample only to show an spproach ko cargo inertis

determinations, and may not refiect actual cargo distributions.

8.1.14
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100
50

¢
o 50 10 150

Cargo Width (ind



o0 = o0~
80 = 1 80 «
Weight Distribution
(stations refer to cargo) 70 704
60 « 60
507 Y L8 509
40 - in. 40 - in. -
wt, 30 30 « 30 =
-E 20m 20 ~ ) o
10 0= 10+
ﬁ
0 1 J L} v L4 L] o LA ¥ o L L
0 100 200 300 400 500 0 50 100 150 0 50 100 150
x Station (ind 2 Station (in) ¥ Station (in)
Centroids:*
100 350 450
[ 45 xdx + [ 20 xdx + f 5 xdx
X= 0 101(:) 360 350 = 155.0
S0 100 150
[ o0+ 802dz + [ 3024z
3= 0 50 - 100 = 60.0
50 100 150
[ 55ydy+[ 2 ydy+j 55 ydy
0 50 100
y= 15,000 =759
Second Moments*
100 350 450
Wx? = [ 45 x1dx + [ 0xdx + [ 5xtdx =374,583,333
0 100 350
50 100 150
W= [ 9024+ [ B0z2+ [ 3022z 50833333
0 50 100
50 100 150
Wyl=[ sSylay+ [ 90ylay+ [ 55 yldy= 72,083,333
0 S0 100

L, =I, —Wi* (equation 8.1-f)
=Wx? —Wx?+ Wz — W2? (Substituting equation 8.1 in 8.1-f)
= 374,583,333 — (10,000) (155)* + 50,833,333 — (10,000) (60)*
= 149,166,666 Ib-in.*

® The x, y, and z distances, as well as the Wx?, Wz2, and Wy? terms in the equations for Centroids and Second

Moments, refer only to these calculations and are not 10 be confused with the distances and moment terms in
Table 8.1-A. .
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La = I = W% (equation 8.1f)
= Ws' — wr?+ Wyt — wy?
= 50,833,334 ~ (10,000) (60)* + 72,083,333 — (10,000) (75)*
=30,666,666 Ib-in.?
L. =1, — Wi? (equation 8.1-f)
=Wy? —Wy* + Wx* —Wi2
72,083,333 — (10,000) (75)* + 374,583,333 — (10,000) (155)*
150,166,666 Ib-in.?

4. Determine the total airplane inertias in pitch, roll, and yaw. All of the values calculated in 1, 2, and 3 are tabulated
in Table 8.1-A and each column is totaled.

fi

i

a. Inertia about the remote axis

I, =2 (Wr* + 1,,) (equation 8.1-¢)
=3 (Wix* +17) +1,]
= { 28,946,000+ 2,279,500} 1" + (1,688,505)10
= 32,914,005 % 107 lb-in.®

L =3 (wr* + I.) (equation 8.1)
=3 wyt+ ) +1,]
= (400,000 + 2,279,500)10* + (1,324,670)10°
= 4,004,170 X 10? tb-in.®

L =3 (Wr* + 1.,) (equation 8.1-¢)
=Z Wy +x7) + L]
= (400,000 + 28,946,000) 10" + (2,924,872)10*
= 32,270,872 X 10° lb-in.?

b. Inertia about the airplane centroid

Pitching I, = I, —W¥* (equation 8.1-f)

g“y {equation 8.1.g)

L=, - [R0E )

where T =

2w

= 32,914,005 X 10* — [

(46,450,000)* + (13,040,000)*
76,300

= 2,395,352 X 1¢° lb-in.?
Rolling I, = I, —Wi* (equation 8.1)

=1 - [2 W) + T We)*

] E w

- _ (2,000,000)* + (13,040,000)*
= 4,004,170 X 10* 56300
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1,723,153:< 10* Ib.in.?

I

Yawingl, = 1, - Wi’ (equation 8.1-f)

o _[Zw? + 3 (Wy)?

=L [ =W ]

(46,460,000)* + (2,000,000)*
76,300

= 32,270,872 X 10® —

= 3,928,387 X 10" Ib-in.2

See Table 8.1-A for tabulated results and conversion to units of mass times distance squared.

TABLE. 8.1-A
sperion | WEIGHT | x . y | Wx <10 [Wz X 107 | Wy X 107 [wx? X 10 [Wz? 10 Twy? X 1078
R tih) (in.) Gin) | tind | Obin) (lb-in.) Ohind | (bin? | (bind | (bein?)
Wing 15.000 650 150 9750 2250 6337500 | 337,500
Fuslage | 20000 600 200 12.000 4000 7,200000 | 800,000
H. Stab. 1000 1150 200 1150 200 1,322,500 40,000
V. Stab, 0 1200 300 360 ] 432,000 27,000
1. Plant 10,000 520 150 | 200 5200 1500 2000 2704000 | 225000 | 400,000
Fuel 20,000 650 150 13,000 3000 8450000 | 450,000
Cargo 10.000 500 200 5000 2000 2,500,000 | 400,000
Subtntal 76800 | 608.91 ) 17090 — 46,460 13.040 2000 }28,946,000] 2279500 400,000
PITCH ROLL YAW

SECTION] L. X107 | Lo X107 | L, X 107
11b-in.?) (Ib-in?) {M-in.%)

Wing 43.977 628,125 672,102
Fuselage (1,442,808 54,601 1,442,808
H. Stab. 443 8222 8665
V. Stah. 1769 873 896
P. Plant 12,734 2075 12,734
Fuel 37.607 600,107 637,500

Covgo | 149,167 30,667 | 150,167

Subtotal [1,688,50511,324,670 | 2,924,872

Total L ~ Ibin  |2,395,352/1,723,153 | 3,928,397
Total 1. ~ slug-i** 517 3n 848

44 in. .48 in’-ft/sec’

This conversion factor gives an inertia value at seu level. since the value of 3217 ft/se¢’ is the standard acceleration of
gravity at sea level.

*For conversi 1 . g 14 1 L
version to stug-ft', multiply Ibin by ( 225 ) (3373 /s 4632
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— AIRPLANE
CENTERLINE
po—C, —o-l Ca ‘J]
o | - C.
WING SHAPES
y
MASS y=s y=— L _x
CHORD C-G
L + Ce— : G
TN )
dx
CHORD ¢ *
MASS DISTRIBUTIONS
L3 Ct C )
— P(—Cl+cb+ce)
Sm=f Lxtt [ o f *d‘+fr 7
C. C X

Y A (=G G L O
T mx —f £ xidx +j pxdx — T;-_GA da ! J' L:i: o vt f—-—---—-—?"“——“ - -—*
I 3 .
|
G “ - e C ]

[=2mxi=f -&x’dl'i'f px‘dx—f T}ax"dx+f E%Cnx’dx
0 C. C. C,
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12
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K. = 0.703 for any wing
K. = 0.771 for any horizontal or vertical stabilizer

where

FIGURE 8122 WING PITCHING INERTIA CONSIDERATIONS
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8.2 MISSILE MASS AND INERTIA
Two methoils of estimating missile mass and inertia, each limited by the initial assumptions and input data, are pre-
sented in this section. The method selected will depend on the desired accuracy related to the problem at hand.

The first method, more sophisticated than the second, requires an estimated weight and center-of-gravity breakdown of
the vehicle. Although the results are presented in the Datcom for hand calculations, they are most expeditiously pro-
gramed for a small-capacity computer. The hand computations may be long and tedious, but they are not complicated.

The second methed presents the procedure, based on estimates of gross stage weight and profile, for determining the
order of magnitude of pitch and roll moments of inertia of a vehicle.

DATCOM METHODS

Method 1

This method assumes that the hasic body being analyzed is symmetrical about one axis, as illustrated in the axis-system
diagram of sketch.(a). This leads to the assumption that the center of gravity of the body lies on the longitudinal axis
of the vehicle. However, this assumption does not eliminate handling of missile components that are not symmetrical.

,‘ e — 5

SKETCH (a)

A second assumption is that the moment of inertia with respect to the z, axis is equal 1o the moment of inertia with
respect v the y, axis. {yaw moment of inertia = pitch moment of inertia). This assumption is reasonable for most
missile bodies and will be in the range of accuracy desired for moment-of-inertia values of vehicles in the preliminary-
design phase.

A third assumption is that all components can be approximated by a linear mass distribution along the longitudinal axis
as shown in sketch (b, This assumption forces the following limitation: £,/3 < 2eg < 21/3, where L is the length of
the component and  Lee s the center of gravity of the component measured from the beginning station of the com-
punent. The weight per unit length of element is denoted by  w.

Linear Mass Distribation

W g e — o —— —— — w==fix)

W et mene - i

-;--!..—-|

| R b

SKETCH (b)
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A fourth assumption is that the diameters of any component can be approximated by a linear distribution slong the
longitudinal axis as shown in sketch (¢).

——e————>

SKETCH (¢}

[t will be assumed that W; X%, &, L. d. and d, are given or can be estimated and tabulated for each sym-
metrical component of the missile, where W is the weight of a given component and X is the longitudinal station
of the center of gravity of that component with respect to the missile nose apex.

The values w. and w, are then estimated for each component from the equations

W [, 6(&—1)
“ L-nl* Tn-L ] 8.2a
Wy — T — !ll_ & -1, 2] 8.2-b

The pitch and yaw moments of inertia (I,,’ and 1,.’) of each solid (nonliquid) component can then be estimated from

P = (g — a (P BT _ gy (b 4 2mTN A BT
b= L= = 0 (Fo ) £ (5 + 7%

14 9bT : 2
+ (4= L) (1‘-13—2,52——"'—) TRTRSFRL PN 8.2
where
Wy, — Wy
lb - ‘.
_ db - dn
T= 5, — L,

_ _ Wy = Wa
b - W, !I( !b'.___‘ '—1.)

_ dh — da
N=4d, ‘(’1.,_—'1_)

—1-6(_]—:-— for clements symmetrical about the longitudinal axis
1+ (—-d-i) {use figure 8.2.5)

-~
I

= —E—-;--l—;,-—--—,— for unsymmetrical solid elements in pitch
(—d—) + (——3;—") (use figure 8.2-6)
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= - 1 —  for unsymmetrical solid elements in yaw
(-(yi-) + (—"‘;—ﬂ) (use figure 8.2-6)

%, 7.% are measured to the c.g. of the element as shown in sketch (d)

Pxy Pr,r Pz, are the radii of gyration of the element

yﬂ
rd
d=
b ——
Yy
V4 d/g
;O\
x /
¥
x
SKETCH {d)

The corresponding roll moment of inertia of a given solid element is

T2 ZmTN + bT?
Lo’ = %[u; — L) S (0 - L) (Lg-—)
mN? + 2bTN

3 _ g2
+ (1 — 4%) 3

+ {Ih - ll) sz] 8.2d

where

C= 16 for symmetrical elements (same as K, use figure 8.2-5)

(&Y

= —2 for unsymmetrical elements (use figure 8.2-7 )

2 ey
7+ (%)

and the other symbols are as defined for equation B.2-c.

For liquid components, the pitch and yaw moments of inertia are

T? b . 2mTN + bT*
Ly = L/ = KLI:(I.,‘ —- 49 ({-‘- + L‘ja—) + (0 = 4) (‘37“*"29'4:—)

2 2 2
0t -y ENLBIN gy B - Wi] 8.2e

where

K. is given by figure 8.2-8 as a function of the fineness ratio of the element.

The corresponding roll moment of inertia of a liquid element is assumed to be zero.

L. =0 8.2
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The pitch and yaw moments of inertia of the complete vehicle are obtained by using the parallel-axis theorem to sum the
contribution of each element. Thus

I, =1, = SI,’ + W’ — (SW)% 8.2-g

where the sums are taken over the entire set of elements comprising the configuration and X is the longitudinal posi-
tion of the vehicle center of gravity. This latter term is obtained from the equation

The correspording roll moment of inertia for the complete vehicle is
L = 2l 8.2-i
where again the sum extends over all components.

Certain common vehicle components not satisfying the basic assumptions can be handled exactly by replacing them by
equivalent shapes that do satisfy the assumptions.

The spherical segment shell, which does not have a linear diameter variation, can be replaced by an equivalent
cylindrical shell as illustrated in figure 8.2-9. The moment of inertia of the cylindrical shell can be computed by
the derived equations.

The dimensions of an equivalent solid cylinder for a hemispherical solid are given as
d =089 D L=%—-02105 D
L=0421 D L, =%+ 02105 D
where the symbols are defined in sketch (e).

@ D o d

A

—_—
R — A IR

SKETCH (e)
Methed 2

For order-of-magnitude determinations, figures 8.2-10 and 8.2-11 summarize the pitch (and yaw) and roll radii of gyra-
tion, respectively, of & number of actual missile configurations. This information will allow a determination of these
parameters within perhaps +20 percent. The moments of inertia are then

Iieg = by = lu =HIZW 8.2.
lre g = L =Py 2ZW 8.2k

where W is the total weight of the vehicle
P, and p_ are obtained from figures 8.2-10 and 8.2-11, respectively.
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