
JSBSim Script
Tutorial 1

Bill Galbraith
Holy Cows, Inc.
December 2010

Rev 1.1

JSBSim Scripting Tutorial

1 Purpose
The purpose of this report is to demonstrate scripting capabilities in JSBSim through
example. Various scripting features are shown as scripts are built up from the simplest to
more complex.

An aircraft model of a representative business-class turbojet aircraft was built using the
Aeromatic utility found on the JSBSim web page (http://jsbsim.sourceforge.net/). An
existing engine, the J85-GE-5 engine was used for propulsion. The Aeromatic program
does an amazing job of building a stable aero model from just a few inputs. It generates
all the file structure required for JSBSim, so it’s a great place to start.

 2

JSBSim Scripting Tutorial

2 Environment Set-up
For this tutorial, we will assume that you are running on a Windows-based computer. The
sections below will show you how to install JSBSim and gnuplot.

2.1 JSBSim installation
If you do not have JSBSim installed on your hard drive yet, you have two installation
options. If you already have JSBSim installed, you can skip forward to the next section.

2.1.1 Install JSBSim Distribution Package
At the time of this writing (December 2010), JSBSim does not offer a precompiled
version for Windows, nicely packaged into a ZIP file. There is one available here. This is
a minimal directory structure of JSBSim, with the then-current version of JSBSim
compiled for Windows. The source might not be the latest and greatest, bleeding-edge
code, but it is sufficient to demonstrate the functions and features detailed in this tutorial,
and gets you running quicker, without having to install multiple packages and have to
compile the program yourself.

NOTE: This JSBSim distribution package has been SEVERELY reduced, to include just
the barest minimal set of files necessary to run this tutorial. There are many aircraft and
engines available in the JSBSim source package that have been removed from this
distribution package to keep the size down.

2.1.2 Install and Compile JSBSim from source
If you wish to have the entire set aircraft and engines, as well as the latest source code,
you can download it from CVS yourself. There are instructions on how to do this in the
JSBSim Reference Manual, available at http://jsbsim.sourceforge.net. That manual also
has instructions on building the program under Linux or Cygwin. To build the program
under Windows using Visual C++ 2008 Express (a free C++ compiler available for
Windows), consult the instructions here.

2.2 Installing gnuplot
gnuplot is a very flexible plotting routine. We are going to use it here just because it is
free, and does what we need it to do. Download the installation package from the gnuplot
website http://sourceforge.net/projects/gnuplot/files/, where you can download the latest
gnuplot Zip file. At the time of this writing, the latest version was 4.4.2, so you want the
file gn442win32.zip.

Unzip the package, and move the gnuplot directory some place that you like. I liked it
under the c:\Program Files directory on my Windows XP machines.

Once you have copied the gnuplot directories to a set place, you need to add the binary
directory to the PATH environment variable. Press and hold the Windows key, and press
the break key. Select the advance tab, and click on Environment Variables. Under

 3

http://www.holycows.net/JSBSim/index.htm
http://jsbsim.sourceforge.net/
http://www.holycows.net/JSBSim/index.htm
http://sourceforge.net/projects/gnuplot/files/

JSBSim Scripting Tutorial

System variables, find the Path variable and add to it the path to the gnuplot binary
directory. For my system, I added ;c:\Program Files\gnuplot\binary; at the end of the
command line. Separate each item with a semicolon.

To test your installation, open a command line windows (Windows key-R, cmd <enter>),
navigate to the gnuplot\demo directory (c:\Program Files\gnuplot\demo) and try one of
the demo scripts, such as:

gnuplot textrotate.dem

This should produce a pretty picture on your screen.

 4

JSBSim Scripting Tutorial

3 Scripts
The scripts produced for this tutorial are typical of the type of tests required for aircraft
simulator certification, either military or commercial. Not all test types are shown, but the
fundamentals of building test scripts are shown.

3.1 Test Execution
The tests described below can be run with the JSBSim program. For this tutorial, we will
assume that you are running on a Windows-based computer. I used Windows XP during
this writing, but commands are similar for Cygwin and Linux. Just substitue “/” for “\”.

3.1.1 Running JSBSim
Open a command window. There are multiple ways to do this, but the quickest is
pressing the Windows key and “R” to open up the Run windows, and typing in “cmd”
(without the quotes). Your window should look something like this:

Navigate to the JSBSim directory. In my case, I have it installed on the D: drive, so I’ll
go to that drive and the correct directory as shown:

 5

JSBSim Scripting Tutorial

From the command line in the JSBSim directory, the following command line executes

bug\JSBSim

the JSBSim program:

De

Note that all commands to be typed into the command windows will be shown in a box in this tutorial.

his should spit out some usage information and exit the program, since we didn’t

 you did not get this message, go back and figure out where you went wrong with the

3.1.2 Specific Test Execution
ial:

h

 tests are included in the directory aircraft\Tutorial\scripts. They all end with an

hen we run JSBSim, we have to specify on the command line what test we want to run.
So, our command line will look like this:

T
specify any scripts to run. This message shows that we can specify a script file on the
command line using the –script option. We can also specify the output log file on the
command line with the –outputlogfile option. We will use both of these options below.

If
installation. In order to see the entire output, you will either have to scroll the CMD box,
or maximize the window. Note that when maximized, it isn’t the entire width of you
screen.

There are 5 tests included with this tutor
o trim-cruise
o trim-approac
o flap-change-up
o roll-response
o phugoid

hT ose

extension of .xml.

W

 6

JSBSim Scripting Tutorial

Debug\JSBSim –script=aircraft\Tutorial_1\trim-cruise.xml

If you run this, the program will pause briefly while it runs, then return you to the
ommand prompt. You will have a file called Tutorial_1.csv in the local directory, which

ile that is specified in
l is the aircraft file in our case, and the

utput to a text file that we can go back and look at if there
re errors. For that, we use the redirection operator > and a file, such as JSBSim.out.

c
contains the time history results of the test we just ran. That is described next.

3.1.3 Saving Results to a Specific File
When JSBSim executes, it would normally output the results to a f
the aircraft file (aircraft\Tutorial_1\Tutorial_1.xm
output file is specified in that file as Tutorial_1.csv, which gets placed in the directory
where we are running JSBSim from. For this tutorial, we want to specify a unique output
file, so that we can retain the outputs for plotting later. We use the –outputlogfile
command line option for that.

We are also going to pipe the o
a

So, putting it all together, we end up with a command line that looks like this:

Debug\JSBSim –script=aircraft\Tutorial_1\trim-cruise.xml

utputlogfile=aircraft\Tutorial_1\results\trim-cruise.csv > JSBSim.out –o

Note that this command should be on one line.

t message from JSBSim are recWhen this script is executed, the outpu orded in the file
SBSim.out, and data is recorded to the file results\Tutorial_1\results\trim-cruise.csv, as

. To generate a plot of the results, you can use the
scripts in the aircraft/Tutorial_1/plots directory to

J
specified. This file is a time history of parameters, separated by commas. (CSV stands for
Comma Separated Values) This file can be imported into Microsoft Excel easily for
plotting, or you can use a program like gnuplot. We also pipe the output messages to a
file. This is done to retain the messages from JSBSim in case there is an error.

3.1.4 Plotting the Results
Now, we want to plot the results
gnuplot program. There are plot
generate the plots. To plot to the screen we use the command:

gnuplot aircraft\Tutorial_1\plots\trim-cruise.p

What if we want to plot to a file, so that we can include the pictures in a report, such as

as done for this tutorial? To plot to a file, there are some slightly different commands w
required inside the trim-cruise.p file. In that file, I’ve shown how to output the plots to
the screen, .PNG, or .PDF file. For your convenience, I’ve made those changes and
named the file trim-cruise.pf. You can generate the plots to a .PNG file with:

gnuplot aircraft\Tutorial_1\plots\trim-cruise.pf

That command outputs the results to the file aircraft\Tutorial_1\results\trim-cruise.png.

 7

JSBSim Scripting Tutorial

3.1.5 Putting it all together with the RUNTEST Batch File
The JSBSim command line is pretty long, as well as the plot comman
easily make a mistake typing that out every time, so lets build a batch file

d, and you can
 to handle all of

em Remove the old results file
del /Q aircraft\Tutorial_1

this. If you used the JSBSim distribution package, this batch file already exists.
Otherwise, in your favorite text editor such as edit under the command prompt, build a
file in the JSBSim home directory called runtest.bat that looks like this:

RUNTEST.bat for Windows
r

\results\%1.csv

rem Run the test (not
ebug\JSBSim --script=aircraft\Tutorial_1\s

e: this command is all on one line)
cripts\%1.xml D

--outputlogfile=aircraft\Tutorial_1\results\%1.csv > JSBSim.out

rem Generate gnuplot to the screen
nuplot aircraft\Tutorial_1\plots\%1.p g

rem Generate gnuplot to a PNG file
nuplot aircraft\Tutorial_1\plots\%1.pf g

Now, in the command window, you can just type a simple command like:

runtest trim-cruise

And it deletes the old results, runs the test, and plots out the results to the screen and to a

e aircraft\Tutorial_1\results directory. Pretty sweet, huh? file in th

 8

JSBSim Scripting Tutorial

4 General Test notes
In this section, we will examine the test scripts in detail, starting from the simplest test
and building on it to come up with more sophisticated tests.

For the initial conditions of these tests, I only set the altitude and calibrated airspeed to
that from my criteria data. There was no attempt made to match outside air temperature,
winds or barometric pressure, nor aircraft-specific parameters such as weight, center of
gravity location, or inertias, such as you would do if you were running real flight test.
The default for the aircraft parameters was used.

There are 5 tests which are discussed:

o trim-cruise
o trim-approach
o flap-change-up
o roll-response
o phugoid

 9

JSBSim Scripting Tutorial

4.1 Trim-cruise
What this script demonstrates:

 Basic trimming at altitude and airspeed
 Initialization with engines running

This is the simplest of tests possible. All it does is trim the aircraft at an altitude and
airspeed, and run the simulation for 1 second to verify trim has been obtained.

File: aircraft\Tutorial_1\scripts\trim-cruise.xml
<?xml version="1.0" encoding="utf-8"?>
<?xml-stylesheet type="text/xsl" href="http://jsbsim.sf.net/JSBSimScript.xsl"?>
<runscript xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://jsbsim.sf.net/JSBSimScript.xsd"
 name="Trim in Cruise configuration">

 <use aircraft="Tutorial_1" initialize="scripts/airborne"/>
 <run start="0" end="1" dt="0.00833333">

 <event name="Trim">
 <condition> simulation/sim-time-sec ge 0.0 </condition>
 <set name="ic/vc-kts" value="191.0"/>
 <set name="ic/h-sl-ft" value="4779.0"/>
 <set name="simulation/do_simple_trim" value="1"/>
 </event>
 </run>

</runscript>

In this script, you will see a header, including xml specifications on the first 5 lines. After
that, you will see a use statement. It specifies the aircraft model to use (without the .xml
extension), which JSBSim knows to find in the aircraft directory. The subdirectory
below aircraft is the same as the aircraft name, so the main aircraft file is in
aircraft\Tutorial_1\Tutorial_1.xml. This line also specifies the initialization file
scripts/airborne.xml, which JSBSim knows to look in the directory aircraft/Tutorial_1
directory.

Let’s take a quick look at the airborne.xml initialization file. I use it just for airborne
initialization, with a default airspeed and altitude, and setting all the engines running.
Since each script file requires an initialization file, I used the same one for every script,
then set the test-specific initial conditions inside the script. You could create a separate
initialization file for each script, and in there specify the altitude, airspeed and other
parameters.

File: airborne.xml
<?xml version="1.0" encoding="utf-8"?>
<initialize name="airborne">

 <running> -1 </running>
 <altitude unit="FT"> 5000.0 </altitude>
 <vc unit="KTS"> 150.0 </vc>

</initialize>

 10

JSBSim Scripting Tutorial

Okay, back to the specific test file trim-cruise.xml

The next line in the script specifies the run times, such as start and end times, and the
iteration rate dt. A delta time dt of 0.00833 seconds is 120 hz. So, this causes JSBSim to
execute from times 0.0 to 1.0 at a rate of 120 hz, then exits.

The next block is an event. It specifies the condition for when it should run
(simulation/sim-time-sec ge 0.0), and what it should do when the condition specified is
met. When JSBSim executes this script, it checks the condition every frame until the
condition is met. We specified that sim-time is greater or equal to 0.0, just to make sure
the event is executed. When that condition is met, we override the initial condition (IC)
airspeed and altitude set in the airborne.xml by setting new a IC altitude and airspeed
here that are the specific conditions from the criteria data, then trim the aircraft to the
initial conditions specified, without updating sim-time-sec. JSBSim then executes for 1
second. Since there is an output section in the Tutorial_1.xml file, it dumps the specified
parameters to a data file, also specified in that output section of Tutorial_1.xml, the
output file being Tutorial_1.csv. However, on the command line, we overrode that
output name, and set it to aircraft\Tutorial_1\results\trim-cruise.csv.

The test results plot is shown in Figure 4.1-1. This is generated by running the gnuplot
program. Note that on the top plot for KCAS, kts, you can barely see the green line at
191.0. It is there, just hard to see. That happens sometimes with gnuplot.

Something that needs to be mentioned is that gnuplot commands contained in the trim-
cruise.p and trim-cruise.pf files use a column number to decide what information to plot.
For example, in the trim-cruise.csv file, it plots column 1 versus column 74 as the
KCAS, kts value. If you change the parameters recorded in Tutorial_1.xml, it could
change the column order, and KCAS might not be the 74th column any more. Just a little
something to keep in mind. These are reasons I don’t like gnuplot too much.

 11

JSBSim Scripting Tutorial

Figure 4.1-1. Test results for trim-cruise

 12

JSBSim Scripting Tutorial

4.2 Trim-approach
What this script demonstrates:

 Aircraft configuration for trim (Setting flaps before trimming)

The next step is to show a secondary control surface deflection, such as the flaps. In this
case, we are setting the flaps at 15 degs before trimming the aircraft. In this case, we are
setting the commanded flap position and the actual flap position.

There was been a lot of discussion on the JSBSim Developer’s list recently (December
2010) as to the proper way to handle the initialization of something like the flaps. If you
just set the commanded value and it is different than the default position, the flaps may
transition during the trim, or it may step to the new value. At the time of this writing, it
was not decided which way it should be, and is always subject to change. This method
should cover the issue completely, but it is still something that you should be aware of.

File: aircraft\Tutorial_1\scripts\trim-appraoch.xml
<?xml version="1.0" encoding="utf-8"?>
<?xml-stylesheet type="text/xsl" href="http://jsbsim.sf.net/JSBSimScript.xsl"?>
<runscript xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://jsbsim.sf.net/JSBSimScript.xsd"
 name="Trim - Approach">

 <use aircraft="Tutorial_1" initialize="scripts/airborne"/>
 <run start="0" end="4" dt="0.00833333">

 <event name="Trim">
 <condition> simulation/sim-time-sec ge 0.0 </condition>
 <set name="ic/vc-kts" value="113.0"/>
 <set name="ic/h-sl-ft" value="8776.0"/>
 <set name="fcs/flap-cmd-norm" value="0.5"/>
 <set name="fcs/flap-pos-deg" value="15.0"/>
 <set name="simulation/do_simple_trim" value="1"/>
 </event>

 </run>

</runscript>

There is nothing exciting about this test, other than showing how to trim with the flaps set
to half (The total flap deflection in the Tutorial_1.xml file is 30 degrees). The time
history results are plotted in Figure 4.2-1.

 13

JSBSim Scripting Tutorial

Figure 4.2-1. Test results for trim-approach

 14

JSBSim Scripting Tutorial

4.3 Flap-Change-up
What this script demonstrates:

 Ramped input of a control

Now that the flaps are down and we’ve trimmed the aircraft, let’s demonstrate how to
retract flaps and show the time history of the aircraft reaction. This script does that. As
below, we will initialize the flaps at 15 deg (normalized value of 0.5) before trimming. A
new event has been added to move the flap control up in 0.25 seconds, but the flaps
retract in 1.7 seconds in keeping with the model in Tutorial_1.xml. Note that the
Tutorial_1.xml file was modified from the original Aeromatic output to change the time
to move the flaps from 15 deg to 0. The original time was 4 seconds. This was changed to
1.7 seconds to match the criteria data.

File: aircraft\Tutorial_1\scripts\flap-change-up.xml
<?xml version="1.0" encoding="utf-8"?>
<?xml-stylesheet type="text/xsl" href="http://jsbsim.sf.net/JSBSimScript.xsl"?>
<runscript xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://jsbsim.sf.net/JSBSimScript.xsd"
 name="Flap Change - up">

 <use aircraft="Tutorial_1" initialize="scripts/airborne"/>
 <run start="0" end="15" dt="0.00833333">

 <event name="Trim">
 <condition> simulation/sim-time-sec ge 0.0 </condition>
 <set name="ic/vc-kts" value="118.0"/>
 <set name="ic/h-sl-ft" value="7629.0"/>
 <set name="fcs/flap-cmd-norm" value="0.5"/>
 <set name="fcs/flap-pos-deg" value="15.0"/>
 <set name="fcs/flap-cmd-norm" value="0.5"/>
 <set name="simulation/do_simple_trim" value="1"/>
 </event>

 <!—Move the flap control in 0.25 seconds. The flaps retract in 1.7 seconds -->
 <event>
 <condition> simulation/sim-time-sec ge 4.0 </condition>
 <set name="fcs/flap-cmd-norm" value="0.0" action="FG_RAMP" tc="1.7"/>
 </event>

 </run>

</runscript>

For the test purist, this is a closed loop or stick-fixed response, since we are not allowing
the elevator to move during the test.

The time history plot of the results plotted against the criteria data is shown in Figure
4.3-1. Note that the JSBSim model pitches down pretty quickly, loses altitude and picks
up airspeed. That’s not desirable in an aircraft, but that is what happened with the
JSBSim model produced by Aeromatic.

 15

JSBSim Scripting Tutorial

Figure 4.3-1. Test results for flap-change-up

 16

JSBSim Scripting Tutorial

4.4 Roll Response, Cruise Configuration
What this script demonstrates:

 Trimming with a bank angle
 LFI table for time history input of control (math function – table)
 Math function - product

The next evolutionary step was to have a test with a control input. A roll response test
was chosen. This test shows two features not present in the previous test, trimming in a
bank and a time history of a control input. The test was first written with just a trim to a
bank angle and allowed to run. The aircraft eventually rolled out wings level as expected.
Next, a simple control input was introduced which was close to the criteria data input.
Note the use of the function table construct.

File: aircraft\Tutorial_1\scripts\roll-response.xml
<?xml version="1.0" encoding="utf-8"?>
<?xml-stylesheet type="text/xsl" href="http://jsbsim.sf.net/JSBSimScript.xsl"?>
<runscript xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://jsbsim.sf.net/JSBSimScript.xsd"
 name="Roll Response">

 <use aircraft="Tutorial_1" initialize="scripts/airborne"/>
 <run start="0" end="9.5" dt="0.00833333">

 <event name="Trim">
 <condition> simulation/sim-time-sec ge 0.0 </condition>
 <set name="ic/vc-kts" value="216.0"/>
 <set name="ic/h-sl-ft" value="10592.0"/>
 <set name="ic/phi-deg" value="-42.0"/>
 <set name="simulation/do_simple_trim" value="5"/>
 </event>

 <event name="Time Notify" continuous="true">
 <description>Provide a time history input for the aileron</description>
 <condition> simulation/sim-time-sec ge 0 </condition>
 <set name="fcs/aileron-cmd-norm" >
 <function>
 <table>
 <independentVar lookup="row">simulation/sim-time-sec</independentVar>
 <tableData>
 0.0 0.0
 5.2 0.0
 6.6 0.2
 10.0 0.2
 </tableData>
 </table>
 </function>
 </set>
 </event>

 </run>

</runscript>

This script shows how to set up a table for control input. Between the data points listed,
an interpolation is performed to arrive at the desired value. The plotted results of this test
are shown in Figure 4.4-1.

 17

JSBSim Scripting Tutorial

Figure 4.4-1 Test results for roll-response

 18

JSBSim Scripting Tutorial

4.5 Phugoid Dynamics – Cruise
What this script demonstrates:

 Declaration of local parameters
 Multiple events
 Notification within an event
 Math functions (sum, difference, table)

The next step was to introduce a complexity in the control playback. A detailed
explanation is required for this one.

When the aircraft was tested, it achieves trim at a particular elevator position. When the
simulation is trimmed, it arrives at an elevator position that is probably different than the
criteria. In order to excite the Phugoid dynamics, a pulse is introduced into the elevator. If
we attempted to input the elevator angles directly from the criteria data, on the very first
frame the elevator would jump from the simulation trimmed position to the aircraft
trimmed position, which might be a significant jump. This will result in a response when
none was expected. Instead, we want to play back the movement relative to the trim
position, not the absolute position. As such, I needed to determine the position of the
elevator when trimmed, and calculate the offset from the criteria. This offset is then
removed from the criteria position for the duration of the maneuver to arrive at the
elevator position that we need to command, or a delta command.

This script shows how to do some of the math functions, as well as how to declare and
use new parameters. These parameters are visible only within this script, and are
destroyed when the script exists. With a little examination, you can probably see what it
is doing.

File: aircraft\Tutorial_1\scripts\phugoid.xml
<?xml version="1.0" encoding="utf-8"?>
<?xml-stylesheet type="text/xsl" href="http://jsbsim.sf.net/JSBSimScript.xsl"?>
<runscript xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://jsbsim.sf.net/JSBSimScript.xsd"
 name="Phugoid">

 <use aircraft="Tutorial_1" initialize="scripts/airborne"/>
 <run start="0.0" end="244" dt="0.0166667">

 <!-- Declare the local parameters -->
 <property> fcs/elevator-offset-deg </property>
 <property> fcs/elevator-playback-cmd-deg </property>
 <property> fcs/elevator-cmd-deg </property>

 <event name="Trim">
 <description>Trim at the initial conditions state</description>
 <condition> simulation/sim-time-sec ge 0.0 </condition>
 <set name="ic/vc-kts" value="157.0"/>
 <set name="ic/h-sl-ft" value="9624.0"/>
 <set name="simulation/do_simple_trim" value="1"/>
 </event>

 <event name="Calculate the elevator offset in degrees">
 <condition> simulation/sim-time-sec ge 0.0 </condition>

 19

JSBSim Scripting Tutorial

 <set name="fcs/elevator-offset-deg">
 <function>
 <difference>
 <!--<property> fcs/elevator-pos-deg </property> -->
 <value> 0.0 </value>
 <value> 0.244034 </value> <!-- the first value in the playback table -->
 </difference>
 </function>
 </set>
 <notify>
 <property> fcs/elevator-pos-deg </property>
 <property> fcs/elevator-offset-deg </property>
 <property> fcs/pitch-trim-cmd-norm </property>
 </notify>
 </event>

 <!--
 Playback an actual time history of the elevator position. Here, we are just looking
 up the elevator position from the criteria data
 -->
 <event name="Calculate the cmd playback elev pos in deg" continuous="true">
 <description>Provide a time history input for the elevator</description>
 <condition> simulation/sim-time-sec ge 0.0 </condition>
 <set name="fcs/elevator-playback-cmd-deg" >
 <function>
 <table>
 <independentVar lookup="row">simulation/sim-time-sec</independentVar>
 <tableData>
 0.00 0.2440
 0.25 0.2497
 0.50 0.2578
 0.75 0.2341
 1.00 0.2310
 1.25 0.2124
 1.50 0.2150
 1.75 0.2363
 2.00 0.2320
 2.25 0.2291
 2.50 0.2387
 2.75 0.2631
 3.00 0.2538
 ……. (Lots of values snipped out)
 243.50 0.1979
 243.75 0.1962
 244.00 0.2048
 </tableData>
 </table>
 </function>
 </set>
 </event>

 <!--
 Here we are just calculating the new commanded elevator position, from
 the position in the criteria data, and the offset of the JSBSim trimmed
 position from the criteria
 -->
 <event name="Calculate the cmd elev pos in deg" continuous="true">
 <condition> simulation/sim-time-sec ge 0.0 </condition>
 <set name="fcs/elevator-cmd-deg">
 <function>
 <sum>
 <property> fcs/elevator-playback-cmd-deg </property>
 <property> fcs/elevator-offset-deg </property>
 </sum>
 </function>
 </set>
 </event>

 <!--
 Calculate the normalized position for the elevator. Note that this reflects

 20

JSBSim Scripting Tutorial

 the FCS section in the Tutorial_1.xml file, although we used degrees here
 instead of radians, just to eliminate one conversion.
 -->
 <event name="Calculate the normalized cmd elevator position" continuous="true">
 <condition> simulation/sim-time-sec ge 0.2 </condition>
 <set name="fcs/elevator-cmd-norm">
 <function>
 <table>
 <independentVar lookup="row"> fcs/elevator-cmd-deg </independentVar>
 <tableData>
 -20.0 -1.0
 20.0 1.0
 </tableData>
 </table>
 </function>
 </set>
 </event>

 </run>

</runscript>

There is a control modeling issue that is worth discussing at this point. The Aeromatic
model produced is intended for use on a computer, probably flying FlightGear though a
joystick. The joystick is a spring-centering input device. There are also trim inputs, which
on some joysticks, are small sliders on the side of the joystick. The two inputs are
considered in parallel, and are summed together to calculate the elevator position.

In most general aviation aircraft and many older generation commercial and military
aircraft, the controls are considered reversible. This means that the yoke or stick is
connected directly to the elevator through a linkage system of cables, pushrods, turn
cranks, gears, and other devices. When the cockpit control is moved, the surface moves,
and when the surface moves, the cockpit control moves. When the trim is activated, the
surface moves, which moves the cockpit control. This system is considered a series
connection, so you can’t move the trim independent of the cockpit control.

So, in the JSBSim simulation, when the aircraft is trimmed, the trim position is used, and
the elevator is maintained at zero, while in the aircraft, the trim is used to relocate the
elevator to a non-zero location. There is a notation in the script for this test, indicating
that the offset is only the offset from 0.0 of the criteria data, without considering the
simulation elevator, since the elevator is zero.

Since the script has control positions for the entire duration of the test, this Phugoid test is
a stick-fixed response. This would be equivalent to the pilot moving the stick to input the
elevator pulse, then return the stick to the original position and holding it there. There is
another way to perform this maneuver, called stick-free. As the name suggests, once the
pulse is input and the control is returned to neutral, the pilot would release the stick and
allow the elevator to float as it wishes, which would move the stick. This level of
modeling is not present in the JSBSim Tutorial_1 model now, and probably won’t be for
several generations of improvements, as this is some pretty involved stuff.

The plots of the test results are shown in Figure 4.5-1. Note that the elevator deflection
mimics that of the criteria data, but is offset from the criteria.

 21

JSBSim Scripting Tutorial

Figure 4.5-1. Test results for phugoid

 22

JSBSim Scripting Tutorial

 23

5 About the Author
I have over 26 years experience building flight simulators for military and commercial
applications. I have written and/or used several Automatic Fidelity Test (AFT) systems in
the past, and am well versed in testing requirements for flight simulators. I wrote my first
plotting routine in 1984, and my first AFT system in 1986. I was familiar with the
operation and concepts of JSBSim, but had never written a model or scripts until a couple
weeks before I started this tutorial. I support the DATCOM+ aero estimation tool, and
one of the outputs is in JSBSim model format.

You can reach me at billg@holycows.net.

mailto:billg@holycows.net

	1 Purpose
	2 Environment Set-up
	2.1 JSBSim installation
	2.1.1 Install JSBSim Distribution Package
	2.1.2 Install and Compile JSBSim from source

	2.2 Installing gnuplot

	3 Scripts
	3.1 Test Execution
	3.1.1 Running JSBSim
	3.1.2 Specific Test Execution
	3.1.3 Saving Results to a Specific File
	3.1.4 Plotting the Results
	3.1.5 Putting it all together with the RUNTEST Batch File

	4 General Test notes
	4.1 Trim-cruise
	4.2 Trim-approach
	4.3 Flap-Change-up
	4.4 Roll Response, Cruise Configuration
	4.5 Phugoid Dynamics – Cruise

	5 About the Author

